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A B S T R A C T

This paper introduces the Efficient Decoupled Masked Autoencoder (EDMAE), a novel self-supervised method
for recognizing standard views in pediatric echocardiography. EDMAE introduces a new proxy task based on
the encoder–decoder structure. The EDMAE encoder is composed of a teacher and a student encoder. The
teacher encoder extracts the potential representation of the masked image blocks, while the student encoder
extracts the potential representation of the visible image blocks. The loss is calculated between the feature maps
output by the two encoders to ensure consistency in the latent representations they extract. EDMAE uses pure
convolution operations instead of the ViT structure in the MAE encoder. This improves training efficiency and
convergence speed. EDMAE is pre-trained on a large-scale private dataset of pediatric echocardiography using
self-supervised learning, and then fine-tuned for standard view recognition. The proposed method achieves high
classification accuracy in 27 standard views of pediatric echocardiography. To further verify the effectiveness
of the proposed method, the authors perform another downstream task of cardiac ultrasound segmentation
on the public dataset CAMUS. The experimental results demonstrate that the proposed method outperforms
some popular supervised and recent self-supervised methods, and is more competitive on different downstream
tasks.
1. Introduction

Congenital heart diseases (CHDs) are the most prevalent types of
birth defects, affecting approximately 0.9% of live births. Unfortu-
nately, they also represent the primary cause of death among children
between the ages of 0 and 5 [1]. Each year, around 100,000–150,000
newborns in China are diagnosed with CHD, and the incidence of CHD
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has been steadily rising since the full implementation of the second-
child policy in 2016. Therefore, early and precise diagnosis of CHD
holds significant clinical importance.

Transthoracic echocardiography (TTE) is a cost-effective, non-
invasive, and radiation-free imaging technique that enables real-time
and dynamic visualization of the heart. TTE has become an essential
tool for the diagnosis and treatment of CHD due to its ability to rapidly
detect various cardiac abnormalities [2]. TTE involves standard view
746-8094/© 2023 Elsevier Ltd. All rights reserved.
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acquisition, dynamic image scanning, and measurement. Among these
steps, the precise acquisition of standard views is a prerequisite for
subsequent measurement of biological features and the final diagnosis
of CHD.

Nevertheless, the complex and variable anatomy and spatial config-
uration of congenital heart disease make accurate diagnosis through
TTE challenging and time-consuming, necessitating experienced car-
diac specialists to carefully interpret each ultrasound image. The Amer-
ican Society of Echocardiography recommends the use of standard
imaging techniques for 2D, M-mode, and color Doppler echocardio-
graphy [3]. This entails acquiring images following a reproducible
protocol. Specifically, the acquisition of images in a particular view
is necessary to facilitate the measurement of specific structures and
minimize inter- and intra-observer variability [4].

Hence, the application of deep learning techniques for the automatic
intelligent recognition of standard views in pediatric echocardiography
becomes imperative. This approach not only forms the basis for intel-
ligent CHD diagnosis but also offers standardized training for primary
cardiac ultrasonographers to perform view sweeping, thereby providing
valuable clinical applications.

Deep learning has rapidly been applied to the medical field due
to the continuous development of artificial intelligence. UNet [5], for
instance, has been proposed for medical image segmentation. Deep
learning being data-driven requires a large amount of annotated data to
fit the target function. Annotating a large amount of data is expensive,
particularly in the medical field where the number of images is small,
and accurate data annotation is challenging. This study collected a large
number of children’s echocardiograms, and annotating each image was
costly and time-consuming. Furthermore, although pre-training on a
large-scale dataset can improve the network’s performance to some de-
gree, natural image to medical image transfer often yields poor results.
Self-supervised learning has become increasingly popular in recent
years because it can reduce the cost of annotating large-scale datasets
by using custom pseudo-labeling to supervise training and learned
latent representation for multiple downstream tasks [6]. The masked
autoencoder, as a powerful self-supervised method, has recently been
rapidly applied to medical image analysis [7–11]. Autoencoders were
introduced into medical image analysis by Zhou et al. [7], and they
were verified on multiple medical datasets and tasks. Tian et al. [8]
used a memory-enhanced multi-level cross-attention masked autoen-
coder for unsupervised anomaly detection in medical images. Xiao
et al. [9] conducted in-depth research on the masked autoencoder for
multi-label thoracic disease classification and achieved advanced per-
formance on chest X-ray images. Additionally, some researchers [10]
replaced the ViT [12] used by MAE [13] with Swin Transformer [14] to
adapt to small medical datasets, while others [11] applied the masked
autoencoder to medical multimodal data.

Self-supervised pre-training for images involves learning from
degradation, which entails removing specific information from the
image signal and requiring the algorithm to restore it. However, this
degradation-based method faces a significant bottleneck, which is the
conflict between degradation intensity and semantic consistency. Visual
representation learning relies wholly on degradation since there is
no supervised signal, and the degradation must be strong enough.
Nonetheless, when the degradation is strong enough, it is not guar-
anteed that the images before and after degradation have semantic
consistency. To address this issue, we propose an efficient decoupled
masked autoencoder (EDMAE). The EDMAE has two identical encoders:
the teacher encoder, which takes visible image blocks as input and
can backpropagate to update weights, and the student encoder, which
takes a mask as input and cannot backpropagate, updating weights
from the teacher encoder. Their latent representations are the feature
maps they output, and their alignment is maintained by calculating
the loss between the representations of visible image blocks and mask
image blocks. This approach ensures the encoder’s representations from
2

any part of the image are consistent, which can compel the encoder C
to learn more latent representation information. Consequently, the
encoder is decoupled from the decoder, preventing the decoder from
learning representation information and allowing it to concentrate on
the reconstruction task. Additionally, our proposed method relies on
pure convolutional operations [15], which are lighter and have faster
training and convergence speeds than the ViT used by the MAE and
BEiT [16]. The proposed method, similar to MAE, utilizes asymmetric
encoders and decoders to decrease the time and memory usage required
for pre-training.

We pre-trained the proposed method on a large-scale unlabeled
dataset of pediatric cardiac ultrasound images constructed in this study.
We then validated it on private pediatric cardiac ultrasound stan-
dard view recognition. Furthermore, we conducted experiments on the
public dataset CAMUS to verify that the proposed method can ex-
tract effective representations from the pre-trained ultrasound cardiac
dataset.

The paper is structured as follows: The Introduction section pro-
vides the research background, motivation, research questions, and
objectives of the study. The Related Works section reviews the ex-
isting literature on self-supervised learning and its applications in
medical image analysis. The Proposed Method section describes our
proposed method, including its main architecture, the self-supervised
pre-training process, and the downstream task fine-tuning process. The
Experiment section presents the results of our comparative and abla-
tion experiments. The Discussion section evaluates the advantages and
disadvantages of our model and outlines future plans. Finally, the Con-
clusion section summarizes our proposed method and its performance
results.

The main contributions of this paper are as follows.

1. We propose an efficient decoupled mask autoencoder (EDMAE)
that decouples the encoder and decoder. This enforces the en-
coder to learn high-quality latent representations.

2. The proposed method uses an asymmetric encoder–decoder
structure. DenseNet is used as the encoder, while a lightweight
CNN is used as the decoder. This approach enhances the
method’s efficiency, with lower computational costs and faster
convergence speed.

3. We utilized the proposed method for self-supervised pre-training
on a large-scale private dataset of children’s hearts that we
collected. We then fine-tuned it on two downstream tasks. The
experimental results demonstrate the superiority of the proposed
method.

. Related works

.1. Self-supervised learning

Self-supervised learning can be categorized into two main types:
enerative and contrastive. Contrastive learning (CL) is a discrimina-
ive method that brings similar samples closer together while pushing
ifferent samples farther apart. In 2020, the introduction of MoCo [17]
rought contrastive learning to a new stage by using a dynamic dic-
ionary library, avoiding the memory bottleneck problem faced by
imCLR [18]. MoCo achieved accuracy levels close to those obtained
hrough supervised training.

Generative learning is another form of self-supervised learning.
ince the introduction of Generative Adversarial Networks (GANs) [19]
n 2014, generative models have made significant progress. Recently,
asked Image Modeling (MIM) has become a popular generative self-

upervised algorithm with the introduction of MAE, SimMIM [20], and
EiT. These methods learn feature representations by compressing in-
ut data into an encoding and then reconstructing the input. Recently,
everal works have been proposed to improve this method, such as

AE [21] and TACO [22].
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2.2. Self-supervised learning in medical image analysis

In the field of medical image analysis, data with high-quality anno-
tations are very scarce. Therefore, self-supervised methods have been
quickly introduced in this area. Sowrirajan et al. [23] used the con-
trastive self-supervised method MoCo for self-supervised pre-training
on a chest X-ray dataset, and then fine-tuned on CheXpert with labeled
data. They found that self-supervised pre-training on medical datasets
was better than supervised ImageNet pre-trained models. Navarro
et al. [24]’s work showed that self-supervised methods outperform
previous supervised algorithms in multi-organ segmentation tasks.

Additionally, generative self-supervised algorithms have been pro-
posed for medical image analysis. Ly et al. [25] proposed the Double
Loss Adaptive Masked Autoencoder (DAMA) for multi-
immunofluorescence brain image analysis, and their method achieved
excellent results on multiple tasks. Quan et al. [26] proposed a Global
Contrastive Masked Autoencoder for processing pathological images,
which achieved competitive results compared to other methods. Fur-
thermore, there are many new research findings [7–11].

2.3. Autoencoder

Autoencoder (AE) is an self-supervised learning algorithm that
learns representations of input information by using the input itself
as the learning target [27]. Classic autoencoders include PCA and k-
means [28]. Since the introduction of Masked Autoencoder (MAE)
and BEiT in 2021, autoencoders have become increasingly popular
in computer vision self-supervised learning. Recently, they have been
increasingly applied in medical image analysis [9,25,26,29].

3. Proposed method

3.1. Masked autoencoder

The MAE algorithm employs a random masking technique to ob-
scure certain patches of the input image, which it then reconstructs by
filling in the missing pixels. This approach is based on two fundamental
design principles: (1) an asymmetric encoder–decoder architecture that
handles visible patches differently than mask tokens. The encoder
encodes only visible patches and disregards mask tokens, whereas the
decoder utilizes the encoder’s output (i.e., a latent representation) and
mask tokens to reconstruct the image. (2) Using a higher mask ratio
has demonstrated promising outcomes. Specifically, a mask rate of
75% has been shown to produce favorable results. The MAE algorithm
operates in several steps. First, it divides the input image into patches
and applies a masking operation. Next, it feeds only the visible patches
into the encoder, along with the mask tokens. The encoder’s output
and the mask tokens are then used as input to the lightweight decoder,
which reconstructs the entire image. The loss function used is the
mean squared error (MSE) loss, which is only computed for the masked
patches. MAE has demonstrated robust transferability and achieved the
highest accuracy of 87.8% on the ImageNet-1K dataset. Moreover, due
to its simplicity, it is highly scalable, making it an attractive option for
large-scale image processing applications.

In an asymmetric encoder–decoder architecture, the encoder and
decoder have different numbers of layers or different numbers of neu-
rons in each layer. The encoder of the proposed method is DenseNet,
while the decoder adopts a lightweight CNN. This can provide several
benefits over a symmetric architecture where the encoder and decoder
have the same structure: (1) It can help to reduce the computational
complexity of the network. By using a smaller decoder than encoder,
the network can be trained to extract the most important features of
the input data while discarding less important information. This can
lead to faster training times and better performance on test data. (2)
It can help to reduce the computational complexity of the network. By
using a smaller decoder than encoder, the network can be trained to
3

Fig. 1. The overall architecture of EDMAE.

extract the most important features of the input data while discarding
less important information. This can lead to faster training times and
better performance on test data. (3) By learning a more complex
representation of the input data, the network is better able to generalize
to new and unseen data. This can lead to better performance on many
tasks. (4) By having a larger encoder network and a smaller decoder
network, the network is able to learn a more complex representation
of the input data. This can lead to better performance on tasks such as
image or speech recognition. In addition, the anatomical structures of
the children’s echocardiograms we collected are relatively fixed, which
means that these images have high redundancy. Therefore, using a
higher mask rate for the images can enable the model to learn better
potential representations.

Since the MAE model did not completely separate the encoder and
decoder, the decoder in MAE still learned latent representations. There-
fore, the proposed DEMAE model attempts to decouple the encoder and
decoder by using two identical encoders. One of the encoders, called
the teacher encoder, takes visible images as input and can be back-
propagated to update weights. The other encoder, called the student
encoder, takes masks as input and cannot be back-propagated, with
weights updated from the teacher encoder. The feature maps output
by the encoders are their latent representations, and their consistency
is maintained by calculating the loss between the representations of
visible images and masks. Therefore, the encoder can learn more latent
representations from any part of the image. In addition, unlike MAE,
the proposed DEMAE model is based on pure convolutional operations,
which have faster training and convergence speeds. The convolutional
neural network used is DenseNet, which has strong fitting ability as
well as appropriate parameter and computational complexity.
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Fig. 2. The original image, the image masked by 75%, the unmasked part of the image,
and the reconstructed image.

3.2. Overall structure of EDMAE

The proposed method consists of two inputs, namely the visible and
invisible parts of the input image, as shown in Fig. 1. A convolutional
neural network in a proxy task predicts the invisible part from the
visible part, forcing the encoder to learn the latent representation of
the image. The proposed method uses two encoders with convolutional
neural networks called DenseNet [15]. One encoder is updated through
backpropagation and is called the teacher encoder, while the other
encoder’s backpropagation is blocked and cannot update its weights. It
is called the student encoder, which shares weights with the teacher
encoder. The decoder and encoder use the same network to predict
masked image blocks. The proposed method computes losses in two
places, one is between the feature maps output by the two encoders,
and the other is between the reconstructed image output by the decoder
and the original image. In the proposed method, the momentum update
rule is used to update the weights of the student encoder, which is given
by the following formula:

𝑃𝑠 = 𝑃𝑠 ∗ 𝑚 + 𝑃 𝑡 ∗ (1 − 𝑚) (1)

where Ps represents the weight of the student encoder, Pt represents
the weight of the teacher encoder, and m represents the momentum.

3.3. Self-supervised pretraining

The proposed self-supervised pretraining method is formally an
optimization problem, which is a task of solving static linear inverse
problems through a deep neural network. 𝑧 ∈ R𝐿 serves as input, and
by optimizing the parameters 𝜃 of the untrained neural network 𝑓𝜃 ,
it generates an output 𝑓𝜃(𝑧) that is consistent with the measurement
values 𝑦 ∈ R𝑀 .

𝜃∗ = argmin
𝜃

‖

‖

𝑦 − 𝐹 (𝑓𝜃(𝑧))‖‖
2
2 (2)

where 𝐹 ∈ R𝑀×𝑁 is the forward model. In this paper, 𝑦 is the masked
image, and F is the masking operation. The output of the optimized
4

network 𝑥∗ = 𝑓𝜃∗ (𝑧) produces remarkably high-quality reconstructed
images.

The proposed self-supervised training method follows the workflow
described below. Initially, visible image blocks are fed into the encoder
to extract their representations. Next, predictions are made in the
encoding representation space, ensuring that the masked image blocks’
representations are consistent with those predicted from the visible
image blocks. Finally, the decoder takes in the representations of the
masked image blocks to predict the masked image blocks. Since previ-
ous research [13] has shown that a 75% masking rate produces optimal
representations in autoencoders, this paper will use a 75% masking rate
by default. As shown in Fig. 2, the original image, the image masked
by 75%, the unmasked part of the image, and the reconstructed image
are shown in the figure.

The loss calculated between the feature maps output by the two
encoders is called feature alignment. The advantage of this approach
is that it can ensure that the representation of the mask image block
is consistent with the representation obtained from the prediction of
the visible image block, ensuring that the image before and after
degradation has semantic consistency. It can be represented by the
following expression:

𝑦1 = 𝐹 (𝑥𝑚) (3)

𝑦2 = 𝐹 ∗(𝑥𝑢𝑚) (4)

𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸(𝑦1, 𝑦2) =
1
𝑀

𝑚
∑

0
(𝑦1 − 𝑦2)2 (5)

Among them, 𝑥𝑚 represents the masked image, 𝑥𝑢𝑚 represents the
unmasked image, and MSE represents the mean squared error loss
function (MSE Loss, L2 Loss).

3.4. Downstream task

After completing self-supervised pre-training, all that is needed is to
replace the decoder of the proposed method with a task-specific head
that caters to the downstream task’s characteristics.

For the task of standard view recognition in pediatric cardiac ul-
trasound, the labels consist of multiple fixed categories, making it an
image classification task. Therefore, the decoder needs to be replaced
with a linear layer, and cross-entropy is used as the loss function to
fine-tune the entire network.

For the task of cardiac ultrasound segmentation, a segmentation
task head is required. In this paper, we use the decoder of our own
implementation of DenseUNet as the segmentation head. Specifically,
the feature maps output by the encoder are used as the input to the
segmentation task head, which outputs the segmentation results. The
Focal loss is used to compute the loss between the segmentation results
and the ground truth labels.

4. Experiment

4.1. Dataset

Our dataset is divided into a private dataset of children’s cardiac
ultrasound views and a public dataset CAMUS [34]. We collected a
private dataset from the Department of Pediatric Cardiology, Shanghai
Children’s Medical Center, School of Medicine, Shanghai Jiao tong
University, Shanghai, China. Our study has been approved by the ethics
committee of the center (Approval No.: SCMCIRB-K2022183-1). The
private children’s cardiac ultrasound view data is divided into two
parts, one of which has 17,755 unlabeled children’s cardiac ultrasound
view data for self-supervised pre-training. The other part is the labeled
children’s echocardiography standard view data with 1026 images for
fine-tuning. The data used for fine-tuning includes 616 training sets,



Biomedical Signal Processing and Control 86 (2023) 105280Y. Liu et al.
Table 1
Comparative experiments on private datasets.

Method Overall accuracy (%) Mean precision (%) Mean recall (%) Mean specificity (%) Mean F1 (%)

mobileNetV3-L [30] 98.17 89.68 90.10 99.57 89.06
ResNet50 [31] 98.34 91.80 92.30 99.65 91.58
Swin-T-B [10] 98.35 92.12 92.46 99.65 91.68
DenseNet121 [15] 98.35 92.29 92.66 99.66 91.73
MoCoV2 [32] 98.36 92.34 92.89 99.66 91.85
MAE [13] 98.38 92.77 93.03 99.68 92.54
ConvMAE [33] 98.45 92.82 93.51 99.70 92.97
Ours 98.48 93.20 94.62 99.73 93.63
m
t
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𝐻
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205 validation sets and 205 test sets, which cover 27 standard views of
children’s echocardiography, 1 other blood flow spectrum and 1 other
views. The CAMUS dataset contains two-chamber and four-chamber
acquisitions from 500 patients, as well as reference measurements from
one cardiologist for the full dataset and three cardiologists for 50
patients.

4.2. Training details

We designed our model based on the machine learning framework
PyTorch1.12.1 using Python3.8. In particular, we also use PyTorch-
Lightning1.6.5, an efficient and convenient framework based on Py-
Torch. In addition, some of our comparison experiments and ablation
experiments use the backbone network provided in Torchvision0.13.1.

We trained the proposed model on a GPU server with an Intel Core
i9-10900X CPU, two 10 GB Nvidia RTX3080 GPUs, 32 GB RAM, and
20 GB VRAM.

We set the batch size of data according to different networks to
ensure maximum memory utilization. The number of threads of the
data reading program is 16. The initial learning rate is 1e–3. The
learning rate dynamic adjustment strategy is ReduceLROnPlateau. The
optimizer is AdamW [35]. The training epoch number is 100. Train
with automatic mixed precision.

The loss function used for pre-training is the mean square er-
ror (MSE) loss function. The loss function for downstream classifi-
cation tasks is the cross-entropy loss function. The loss function for
downstream segmentation tasks is Focal Loss [36], which can reduce
the weight of easily classified samples and increase the weight of
difficult-to-classify samples. Its formula is as follows:

𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log (𝑝𝑡) (6)

p∈[0,1] is the model’s estimated probability of the labeled class, 𝛾
is an adjustable focusing parameter, and 𝛼 is a balancing parameter.
We set 𝛾 to 2 and 𝛼 to 0.25.

4.3. Evaluation metrics

To evaluate the performance of the proposed EDMAE, we use some
commonly used metrics to assess the accuracy of the model. For classi-
fication tasks, we use Overall Accuracy (OA), Precision, Recall, Speci-
ficity, and F1-Score (F1). These evaluation metrics are calculated based
on a confusion matrix, where TP represents the number of True Positive
samples, TN represents the number of True Negative samples, FP
represents the number of False Positive samples, and FN represents the
number of False Negative samples.

Overall Accuracy (OA) is used to measure the overall accuracy of
the model’s predicted results:

𝑂𝐴 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(7)

F1 Score represents a comprehensive consideration of Precision and
Recall:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(8)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 (9)
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𝐹𝑃 + 𝑇𝑁 p
Table 2
Experimental results on the public dataset CAMUS.

Method DC (%) HD (mm) AUC (%)

Joint-net [37] 91.05 ± 0.27 3.41 ± 0.86 97.14 ± 0.25
DenseUNet [15] 91.88 ± 0.26 3.34 ± 0.82 97.26 ± 0.24
TransUNet [38] 91.89 ± 0.38 3.25 ± 1.01 97.39 ± 0.24
MFP-Net [39] 92.23 ± 0.29 3.40 ± 0.97 97.28 ± 0.23
PLANet [40] 92.61 ± 0.40 3.10 ± 0.93 97.58 ± 0.23
Ours 93.09 ± 0.22 3.02 ± 0.81 97.84 ± 0.22

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10)

𝐹1 = 2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

= 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(11)

For the task of cardiac ultrasound segmentation, we adopt three
etrics: Dice coefficient (DC), Hausdorff distance (HD), and area under

he curve (AUC).

𝐶 =
2 × |𝐴 ∩ 𝐵|
|𝐴| + |𝐵|

= 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

(12)

𝐷 = max {𝑑𝐴𝐵 , 𝑑𝐵𝐴}

= max {max
𝑎∈𝐴

min
𝑏∈𝐵

𝑑(𝑎,𝑏),max
𝑏∈𝐵

min
𝑎∈𝐴

𝑑(𝑎,𝑏)}
(13)

.4. Experimental results on the private dataset

The proposed method was evaluated on a private dataset cre-
ted for this study. We compared the proposed method with several
ainstream classification networks, namely MobileNetV3-large [30],
esNet50 [31], Swin-Transformer-base [10], and DenseNet121 [15].
hese networks were selected from the TorchVision built-in model
odule and were pre-trained on ImageNet-1k. Additionally, we com-
ared our method with some recent self-supervised methods, including
oCoV2 [32], MAE [13], and ConvMAE [33]. Table 1 shows that the

roposed method outperforms other methods in the majority of metrics.
he F1 Score is 0.66% higher than ConvMAE, Precision is 0.38% higher
han ConvMAE, Recall is 1.11% higher than ConvMAE, and Specificity
s 0.03% higher than ConvMAE. Overall, the proposed method is highly
ompetitive.

Our dataset consists of 29 categories, which include low paraster-
al fifive-chamber view (LPS5C), parasternal view of the pulmonary
rtery (PSPA), parasternal short-axis view (PSAX), parasternal short-
xis view at the level of the mitral valve (short axis at mid, sax-mid),
arasternal long-axis view of the left ventricle (PSLV), suprasternal
ong-axis view of the entire aortic arch (supAO), Long axis view of
ubcostal inferior vena cava (subIVC), subcostal four-chamber view
sub4C), subcostal five-chamber view (sub5C), subcostal sagittal view
f the atrium septum (subSAS), subcostal short-axis view through the
ight ventricular outflflow tract (subRVOT), apical four-chamber view
A4C), apical fifive-chamber view (A5C), low parasternal four-chamber
iew (LPS4C), transverse section of subxiphoid inferior vena cava and
escending aorta (subIVCDAo), other views (others), M-mode echocar-
iographic recording of the aortic (M-AO), M-mode echocardiogra-

hy recording of the left ventricle(M-LV), M-mode echocardiography
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Fig. 3. The confusion matrix of the test results of the proposed method on a private
dataset.

recording of the tricuspid valve (M-TV), Doppler recording from the
abdominal aorta (DP-ABAO), Doppler recording from the mitral valve
(DP-MV), Doppler recording from the tricuspid valve (DP-MV), Doppler
recording from the ascending aorta (DP-AAO), Doppler recording from
the pulmonary valve (DP-PV), Doppler recording from the descending
aorta (DP-DAO), Doppler recording from the tissue doppler imaging
(DP-TDI), other Doppler recordings (DP-OTHER), Doppler recording
from the pulmonary valve regurgitation (DP-PVR), Doppler recording
from the tricuspid valve regurgitation (DP-TVR) and Doppler recording
from the tricuspid valve regurgitation (DP-TVR). As can be seen from
Table 3 and Fig. 3., the proposed method performs well in classifying
most of the views, especially for sub4C, sub5C, and subSAS, which have
the best recognition results. However, the recognition performance for
other views and DP-OTHER is poor.

4.5. Experimental results on the public dataset CAMUS

To further demonstrate the superiority of the proposed method, a
comparison was made with five other methods on the public dataset
CAMUS, including MFP-Net [39], Joint-net [37], TransUNet [38],
PLANNet [40], and DenseUNet implemented by ourselves. As shown in
Table 2, the proposed method outperformed other models in all metrics,
with a DC 0.39% higher than the advanced PLANet and lower HD.

As shown in Fig. 4, we compared the segmentation results of our
proposed method with those of other methods. Our proposed method
can achieve good segmentation results on ultrasound images of mul-
tiple scales. DenseUNet’s segmentation performance is poor, with un-
even segmentation edges in large-scale object segmentation and un-
satisfactory segmentation results for small-scale objects. However, our
DenseUNet model, which underwent self-supervised pretraining, per-
forms much better in segmentation compared to the DenseUNet model
without self-supervised pretraining.

4.6. Ablation study

The anatomical structures of the heart in the pediatric echocardio-
grams we collected are relatively fixed, which results in high redun-
dancy in these images. Therefore, employing a higher mask rate for
these images can enable the model to learn better potential represen-
tations. Although the MAE has demonstrated that a 75% mask rate is
6

Table 3
Experimental results on the private dataset (the blue value represents the best value
in this column, and the red value represents the worst value in this column).

Standard
views

Accuracy
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

F1
(%)

LPS5C 99.74 99.99 91.66 99.99 95.45
PSPA 99.22 85.00 95.00 99.46 89.44
PSAX 99.74 94.44 99.99 99.73 97.06
subIVCDAo 99.74 90.00 99.99 99.73 94.44
subIVC 98.18 81.66 78.03 99.18 79.76
sub4C 99.99 99.99 99.99 99.99 99.99
sub5C 99.99 99.99 99.99 99.99 99.99
subSAS 99.99 99.99 99.99 99.99 99.99
subRVOT 99.99 99.98 99.98 99.99 99.98
A4C 99.74 93.75 99.99 99.73 96.66
A5C 99.99 99.99 99.99 99.99 99.99
LPS4C 99.74 92.85 99.99 99.73 96.15
sax-mid 99.22 93.74 88.88 99.73 91.17
PSLV 99.22 80.91 99.99 99.19 89.44
supAO 99.99 99.99 99.99 99.99 99.99
Others 96.87 87.08 77.29 98.85 81.82
M-AO 99.99 99.99 99.99 99.99 99.99
M-LV 99.99 99.99 99.99 99.99 99.99
M-TV 99.99 99.99 99.99 99.99 99.99
DP-ABAO 99.99 99.99 99.99 99.99 99.99
DP-MV 99.48 92.85 92.85 99.73 92.85
DP-TV 99.22 93.75 86.60 99.73 89.90
DP-AAO 99.48 91.66 91.66 99.73 91.66
DP-PV 99.22 87.50 92.85 99.46 90.00
DP-DAO 98.96 76.19 90.00 99.20 82.51
DP-TDI 99.99 99.99 99.99 99.99 99.99
DP-PVR 99.48 87.49 89.99 99.74 87.30
DP-TVR 99.74 87.50 99.99 99.74 92.85
DP-OTHER 97.92 86.60 69.32 99.45 76.84
Mean 99.48 93.20 94.62 99.73 93.63

Table 4
Convergence time of different self-supervised methods.

Methods Mean F1 (%) Convergence time (hour)

MoCoV2 91.85 48
MAE 92.54 72
ConvMAE 92.97 48
Ours 93.63 24

optimal, we have verified this in the task of standard view recognition
of pediatric echocardiograms, as shown in Fig. 5.

We compared the convergence time of different self-supervised
methods during pre-training on our dataset, as shown in Table 4.

Feature alignment is an important step in the proposed method,
which aligns the potential representations extracted from the masked
image blocks and visible image blocks. This means that the representa-
tions obtained by the encoder from any part of the image are consistent,
which can force the encoder to learn better representations, while the
decoder is only responsible for image reconstruction. Without feature
alignment, the encoder may not be fully utilized, which would cause
the decoder to learn more representation information, violating the
requirements of the decoder’s task. In order to verify the impact of
feature alignment on the performance of the proposed method, we
compared the EDMAE with and without feature alignment, as shown
in Table 5.

The encoder utilized in EDMAE is DenseNet, which possesses a
robust fitting ability and suitable parameters and computational com-
plexity. We compared various encoders in EDMAE for verification,
which can be seen in Table 6.

As the mainstream classification heads in classification tasks are
fully connected layers and rarely use other classification heads, this
article will not compare different classification heads. However, there
are many types of segmentation heads, and this paper uses the seg-
mentation head of the most classic and simple UNet. We selected
some mainstream segmentation heads for comparison, including the



Biomedical Signal Processing and Control 86 (2023) 105280Y. Liu et al.
Table 5
Effect of feature alignment on the performance of recognition of standard views of pediatric echocardiography.

Feature alignment Overall accuracy (%) Mean precision (%) Mean recall (%) Mean specificity (%) Mean F1 (%)

% 98.44 92.78 93.12 99.67 92.62
! 98.48 93.20 94.62 99.73 93.63
Table 6
Effect of various encoders on the performance of recognition of standard views of pediatric echocardiography.

Encoder Overall accuracy (%) Mean precision (%) Mean recall (%) Mean specificity (%) Mean F1 (%)

MobileNetV3 98.39 91.79 93.21 99.67 92.48
ResNet50 98.42 91.81 93.32 99.67 92.55
Swin-T-B 98.44 92.79 93.14 99.68 92.53
Ours 98.48 93.20 94.62 99.73 93.63
Fig. 4. Experimental results on the public dataset CAMUS. The green area represents
the overlapping part between the prediction and ground truth, the red area represents
the part of ground truth not covered by the prediction, and the yellow area represents
the part of the prediction that goes beyond the ground truth.

Fig. 5. Effect of various masking rates on the performance of standard view recognition
in pediatric echocardiography.
7

Table 7
Effect of different segmentation heads on model performance.

Head DC (%) HD (mm) AUC (%)

FCN [41] 92.96 ± 0.31 3.24 ± 0.84 97.65 ± 0.26
DeepLabV3+ [42] 92.94 ± 0.34 3.31 ± 0.92 97.59 ± 0.28
PSPNet [43] 93.12 ± 0.38 3.02 ± 0.96 97.83 ± 0.22
OCRNet [44] 93.06 ± 0.29 3.02 ± 0.97 97.86 ± 0.24
Ours 93.09 ± 0.22 3.02 ± 0.81 97.84 ± 0.22

Table 8
Effect of different loss functions on model performance.

Loss function DC (%) HD (mm) AUC (%)

Cross entropy loss 92.92 ± 0.26 3.24 ± 0.89 97.75 ± 0.24
Focal loss 93.09 ± 0.22 3.02 ± 0.81 97.84 ± 0.22

segmentation heads of FCN [41], DeepLabV3+ [42], PSPNet [43], and
OCRNet [44], to study their impact on model performance. Their back-
bone networks are all DenseNet pre-trained through self-supervision. As
shown in Table 7, different segmentation heads have little impact on
model performance. Although some indicators of certain segmentation
heads surpass the UNet segmentation head we adopted, their cost-
effectiveness is not as good as ours, and it is not the focus of this
paper.

In addition, we compared the impact of loss functions on model
performance. As can be seen from Table 8, the FocalLoss we selected
can balance classes well and is more competitive than the classical
cross-entropy loss function.

5. Discussion

EDMAE achieved excellent classification and segmentation perfor-
mance through self-supervised pre-training on a large-scale dataset of
pediatric cardiac ultrasound. From the experiments described above, it
can be seen that the proposed method has significant advantages over
other methods in downstream tasks such as pediatric cardiac standard
view recognition, with good recognition performance for most views
and only poor recognition for views with less distinct features. In addi-
tion, the proposed method performs well on the public dataset CAMUS
and outperforms many advanced methods, showing good performance
for object segmentation at multiple scales.

There are three primary factors contributing to the outstanding
performance of EDMAE. Firstly, the self-supervised pre-training data
distribution is similar to that of downstream tasks, allowing models
trained on large-scale data to effectively learn the data distribution.
Secondly, the encoder of EDMAE is decoupled from the decoder, which
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compels the encoder to completely extract the latent semantic represen-
tation. Finally, the encoder of the proposed method is a pure convolu-
tion operation, which has faster convergence speed and requires less
pre-training data.

Although we strive to decouple the encoder and decoder and make
them perform their respective duties, this does not mean that the
decoder has not learned potential representations, or that we may not
have allowed the decoder to fully focus on reconstructing images. In
addition, this model is designed for pediatric echocardiography tasks
and has not been validated on other types of ultrasound images or other
types of medical images. In the future, we will explore new methods
to force the encoder–decoder to decouple and perform their respective
tasks. In addition, we will extend our approach to multiple ultrasound
or medical images to promote and validate our method.

6. Conclusion

In this paper, an efficient decoupled masked autoencoder with the
strong feature extraction ability is proposed for standard view recogni-
tion on pediatric echocardiography. The model pre-trained on a private
large-scale children’s cardiac ultrasound dataset has shown excellent
performance in the downstream task of children’s heart standard view
recognition, which surpasses some advanced classification methods.
The proposed model also can be applied in another downstream task,
i.e., cardiac ultrasound segmentation, which achieves good segmenta-
tion performance. Since the training images are collected from clinical
examination database, the proposed method with the high recognition
rate for standard view recognition can provide a good technical basis
for intelligent diagnosis of congenital heart disease. It would become a
new standardized training method for primary-level cardiac ultrasound
physicians to practice cardiac view scanning.
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