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Abstract. Recognition of handwritten mathematical expressions to
LATEX is an image-to-sequence task. Recent research has shown that
encoder-decoder models are well suited for this challenge. Many innova-
tive models based on this structure have been proposed, especially on the
decoder. Such as attention mechanism and bidirectional mutual learn-
ing are used in the decoder. And our model also improves the encoder.
We use the multi-scale fusion DenseNet as the encoder and add Global
Context Attention. This attention mechanism combines the advantages
of force-spatial attention and channel attention. The feature maps of
the two scales output by the encoder are used as inputs to the two
decoder branches. The decoder uses a two-way mutual learning Trans-
former, which can understand high-level semantic and contextual infor-
mation, and can handle long sequences of information well. In order to
save memory, the two decoder branches use a set of parameters, and the
last two branches are distilled and learned from each other. In this way,
not only the bidirectional decoders can learn from each other, but also
the two decoder branches can learn from each other, which increases
the robustness of the model. Our model achieves 56.80%, 53.34% and
54.62% accuracy on CROHME2014, 2016 and 2019, respectively, and
66.22% accuracy on our own constructed dataset HME100k.

Keywords: Mathematical expression · Handwriting recognition ·
Multi scale · Global context attention · Transformer · Bidirection
mutual learning

1 Introduction

Mathematical formula recognition is an important part of OCR, however, it was
not introduced by Anderson in his PhD thesis until the 1960s [1]. He proposed
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a method of using syntax as a standard segmentation and using a top-down
analysis method to identify mathematical formulas. Traditional methods of con-
verting images to LATEX rely on specially designed syntax [16]. However, these
grammars require a lot of prior knowledge to define the structure of mathemat-
ical expressions, the positional relationship of symbols and the corresponding
parsing algorithms in advance, so that complex mathematical expressions can-
not be recognized.

Compared with the traditional OCR problem, handwritten mathematical
expression recognition is a more complex two-dimensional handwriting recogni-
tion problem. Its internal complex two-dimensional spatial structure makes it
difficult to analyze, and the traditional method has a poor recognition effect.
With the advancement of deep learning, encoder-decoder models have shown
fairly effective performance on various tasks such as scene text recognition [4]
and image captioning [26]. It also achieves significant performance improvements
during HMER processing [5]. Zhang et al. [29] introduced the attention mech-
anism to undoubtedly increase the accuracy. They propose the Watch, Attend,
and Parse (WAP) method, which employs a deep fully convolutional network
(FCN) to encode handwritten images and a gated recurrent unit (GRU) with
attention mechanism as the decoder to generate serial output. Zhang et al. devel-
oped DWAP-MSA [27] to try to use a multi-scale feature encoding to identify
symbols of different sizes in handwritten mathematical expressions, so we bor-
rowed this method in model design. LATEX is a markup language designed by
humans and therefore has a cleaner and more defined syntactic structure. For
example, the two parentheses “(”and“)” must be paired. When dealing with
long LATEX sequences, as the distance increases, the dependency information
captured between the currency symbol and the previous symbol becomes weaker
and weaker, and it is difficult for RNN-based models to capture the relationship
between two distant two brackets. And a major limitation of overlay attention
is that it only uses historical alignment information without considering future
information. Most models in the past only decode left-to-right, ignoring infor-
mation on the right, so they may not take full advantage of long-range correla-
tions and the grammar specification of mathematical expressions [2,31]. Zhao et
al. [31] designed a simple bidirectional Transformer decoder called BTTR, but
there is no explicit supervision information for BTTR to learn from the opposite
direction, and its decoders in both directions do not learn from each other, which
limits its bidirectional learning ability.

2 Related Work

2.1 Image-to-Markup

Deng et al. [6] defined the image-to-markup problem as: transforming a rendered
source image into a target rendering markup that fully describes its content and
layout. The source, x, consists of an image. The target, y, consists of a sequence
of tokens y1, y2,. . . ,yT , where T is the length of the output and each y is a token
in the markup language.
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2.2 CNN

In the past ten years, convolutional neural networks have continued to make
efforts in many directions, and have made breakthroughs in speech recognition,
face recognition, general object recognition, motion analysis, natural language
processing and even brain wave analysis.

In 1962, Hubel and Wiesel’s experiments [14] on cats found that the cat’s
visual cortex processes information in a hierarchical structure, that is to say,
it extracts information layer by layer. The simplest information is extracted at
the top, and then continuously. For simple information extraction, high-level
abstract information is gradually obtained. Yann LeCun [19] was the first to use
Convolutional Neural Network (CNN) for handwritten digit recognition and has
maintained its dominance in the problem. In 2012, Alexnet [15] introduced a
new deep structure and dropout method, which increased the error rate from
more than 25% to 15%. It subverts the field of image recognition. In 2014,
Karen et al. [20] used CNN to explore the relationship between the depth of
the convolutional neural network and its performance. By repeatedly stacking
3 × 3 small convolution kernels and 2 × 2 maximum pooling layers, VGGNet
successfully constructed 16 19-layer deep convolutional neural network. In the
same year, Szegedy et al. [21] proposed GoogLeNet. It does not rely solely on
deepening the network structure to improve network performance, but at the
same time deepening the network (22 layers), it has made innovations in the
network structure. It introduces the Inception structure to replace the traditional
operation of simple convolution and activation. In 2015, He et al. [10] proposed
ResNet, which made great innovations in the network structure and introduced
the residual network structure. With this residual network structure, very deep
networks can be designed, providing feasibility for advanced semantic feature
extraction and classification. In 2017, Huang et al. [13] proposed DenseNet, which
established the connection relationship between different layers, made full use of
features, and further alleviated the problem of gradient disappearance. Moreover,
its network is narrower and has fewer parameters, which effectively suppresses
overfitting and reduces the amount of computation. The Dense block proposed
by it solves the problem that the size of each input is different, and it is estimated
that there is no need to force the input to be modified into a fixed shape. Due to
the many advantages of this network, this paper uses DenseNet with the addition
of the GCAttention module as the backbone network for feature extraction, that
is, the encoder of our network.

2.3 Global Contextual Attention

The goal of capturing long-range dependencies is a global understanding of the
visual scene, which is effective for many computer vision tasks, such as image
classification, video classification, object detection, semantic segmentation, etc.
Gao et al. [3] proposed a global contextual attention module, which is lightweight
and can fully utilize global contextual information. The global context block can
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be represented as

yi = xi + wv2ReLU(LN(wv1

∑

∀j

ewkxj

∑
∀m

ewkxj
xj)) (1)

2.4 Transformer

Recently transformers [23] have shown good performance on a variety of
tasks [7,8], it can avoid recursion, in order to allow parallel computing, and
reduce performance degradation due to long-term dependencies. Since the hid-
den layer nodes of RNNs at time T depend on forward input and intermediate
calculation results, this feature limits the parallel computing capability of RNNs.

The core of Transformer is Scaled Dot-Product Attention, which solves the
problem that because the network inputs multiple vectors of different sizes, and
there may be a certain relationship between the vectors, these relationships
cannot be fully utilized. Its formula is as follows:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2)

2.5 Mutual Learning

Zhang et al. [30] proposed a deep mutual learning (DML) strategy, in which a
group of student networks, learns from and mentor each other throughout the
training process. Different from the static pre-defined one-way transition path
between teacher and student in distillation model.

Guo et al. [9] proposed an efficient online knowledge extraction method
through collaborative learning, called KDCL, which can continuously improve
the generalization ability of deep neural networks (DNNs) with different learning
capabilities. Different from the two-stage knowledge distillation method, KDCL
treats all DNNs as “students” and trains them collaboratively in one stage
(knowledge is transferred among any students during collaborative training),
thus achieving parallel computing, fast Computing and attractive generalization
capabilities.

3 Methodology

3.1 Encoder

Since the size of images of handwritten mathematical expressions is usu-
ally random size, a model called Densely Connected Convolutional Network
(DenseNet) [13] is used in our encoder. DenseNet is a type of FCN that connects
all networks in a feed-forward fashion and enhances feature propagation and
reuse by ensuring the maximum information flow between layers in the network,
so FCN can handle images of any size.
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There are many symbols of different scales in handwritten mathematical
expressions, and using pure DenseNet will lose some details. The multi-scale
dense network proposed by Gao et al. [12] utilizes information at all scales,
which is obviously very expensive. This paper uses a DenseNet with a three-
layer structure, and only the last layer of it is upsampled and the output of
the second layer is fused. Finally, the encoder outputs the feature degrees of
these two scales. This not only obtains multi-scale information, but also saves
computational expenses. At the same time, we add a GCAttention layer after
each pooling layer to make the network pay more attention to useful features,
as shown in Fig. 1.

Fig. 1. The structure of the global contextual attention layer and the multi-scale
encoder.

3.2 Decoder

We use the standard Transformer [23] as the decoder, and the feature maps
output by the encoder are embedded into the decoder respectively. And these
branches share a Transformer model to reduce the amount of parameters and
computing power as shown in Fig. 2.
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To achieve bidirectional training, we add 〈sos〉 and 〈eos〉 to the LATEX
sequence as start and end symbols, respectively. For example, a target LATEX
sequence

Y = {Y1, Y2, ..., YT } (3)

of length T, which is represented as

Yl2r = {〈sos〉 , Y1, Y2, ..., YT , 〈eos〉} (4)

from left to right (L2R), is represented as

Yr2l = {〈eos〉 , YT , YT−1, ..., Y1, 〈sos〉} (5)

from right to left (R2L).
To quantify the difference in prediction distribution between the two direc-

tions and between the two branches, we introduce the Kullback-Leibler (KL)
loss [11]. After optimization, this loss can minimize the distance of the probabil-
ity distribution between different branches. The KL distance in both directions
is calculated as follows:

σ(Zl2r
i,k , S) =

exp(Zl2r
i,k /S)

K∑
j=1

exp(Zl2r
i,k /S)

(6)

LKL = S2
T∑

i=1

K∑

j=1

σ(Zl2r
i,k , S) log

σ(Zl2r
i,k , S)

σ(Zr2l
T+1−i,j , S)

(7)

where σ represents the soft probability of one direction.

3.3 Positional Encoding

Since the Transformer model itself does not have any sense of position for each
input vector, we do positional embeddings for both image and word vectors,
which can effectively help the model identify areas that need attention. For the
positional embedding of word vectors, we directly adopt the method of Trans-
former’s original research [23]. For the positional embedding of word vectors,
we directly adopt the method of Transformer’s original research. It is defined as
follows:

PE(pos, 2i) = sin(pos/100002i/dmodel) (8)

PE(pos, 2i + 1) = cos(pos/100002i/dmodel) (9)

where pos is the position and i is the dimension.
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Fig. 2. The structure of the decoder.
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Zhao et al. [31] describe a 2D normalized positional encoding for representing
image positional features. The sinusoidal positional encoding PW

pos,d/2 is first
computed in both dimensions and then concatenated. Given a two-dimensional
position tuple (x, y) and the same dimension d as the word position encoding,
the image position encoding vector P I

x,y,d is represented as:

x =
x

H
, y =

y

W
(10)

PW
pos,d/2 = [PW

x,d/2;P
W
y,d/2] (11)

where H and W are height and width of input images. Finally, the weighted
summation of the cross-entropy loss and the KL distance of each output is per-
formed.

4 Experiments

4.1 Datasets

We use Competition on Recognition of Online Handwritten Mathematical
Expressions (CROHME2014) as our training set. It has 111 types of mathemati-
cal symbols and 8836 handwritten mathematical expressions, including numbers,
almost all common operators. Then we take three public test datasets, as test
sets, they are CROHME 2014, 2016 and 2019 with 986, 1147 and 1199 expres-
sions, respectively.

In addition, we trained and tested on a dataset called HME10k. This dataset
collects handwritten mathematical expressions in real handwriting scenarios
from students, which is more diverse and richer than the CROHME dataset.
But because it is a photo of a real scene, it is inevitable that there are many
blurry images that are unrecognizable by humans, which is not helpful for our
training, so we remove them. We divided this dataset into two parts, 80,000
training sets and 20,000 test sets.

4.2 Comparison with Prior Works

We compare our method with the previous state-of-the-art as shown in Table 1.
All the methods shown in the table only use the 8836 training samples offi-
cially provided by CROHME, and do not use data augmentation to ensure the
fairness of the performance comparison. These methods include PAL (Wu et
al. [24]), PAL-v2 (Wu et al. [25]), WAP (Zhang et al. [29]), PGS (Le at el. [18]),
DWAP (WAP with DenseNet as encoder), DWAP-MSA (DWAP with multi-scale
attention) (Zhang et al. [27]), DWAP-TD (DWAP with tree decoder) (Zhang et
al. [28]), DLA (Le [17]), WS WAP (weakly supervised WAP) (Truong et al. [22])
and BTTR (Zhao et al. [31]).

The results show that our method has a significant improvement in accuracy
on CROHME 2014, which is 2.84% higher than BTTR, and at the same time,
the accuracy on ≤1 and ≤2 is also improved by 5.25% and 6.57%, respectively.
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Table 1. Comparison with prior works (in %). The results in the table are cited from
their corresponding papers.

Dataset Methods ExpRate ≤1 error ≤2 error

2014 PAL 39.66 56.80 68.51

WAP 46.55 61.16 65.21

PGS 48.78 66.13 73.94

PAL-v2 48.88 64.50 69.78

DWAP-TD 49.10 64.20 67.8

DLA 49.85 – –

DWAP 50.60 68.05 71.56

DWAP-MSA 52.80 68.10 72.00

WS WAP 53.65 – –

BTTR 53.96 66.02 70.28

Ours 56.80 71.27 76.85

2016 PGS 36.27 – –

TOKYO 43.94 50.91 53.70

WAP 44.55 57.10 61.55

DWAP-TD 48.50 62.30 65.30

DLA 47.34 – –

DWAP 47.43 60.21 63.35

PAL-v2 49.61 64.08 70.27

DWAP-MSA 50.10 63.80 67.40

WS WAP 51.96 64.34 70.10

BTTR 52.31 63.90 68.61

Ours 53.34 67.56 74.19

2019 DWAP 47.70 59.50 63.30

DWAP-TD 51.40 66.10 69.10

BTTR 52.96 65.97 69.14

Ours 54.62 68.97 74.64

HME100K Ours 66.22 77.81 81.20

Table 2. Ablation study on the CROHME 2014 test sets (in %).

Mutual learning GCAttention Multi-scale ExpRate

� � � 48.36

� � � 53.96

� � � 55.22

� � � 56.80
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Our method also improves ExpRate by 1.03% and 1.66% compared to BTTR
on CROHME 2016 and 2019, respectively., which proves the effectiveness of our
model.

4.3 Ablation Study

In Table 2, the mutual learning in the first column indicates whether multi-scale
and bidirectional mutual learning is used, the multi-scale in the second column
indicates whether multi-scale is used in the encoder, and the GCAttention in the
third column indicates whether the encoder is added Global contextual attention
layer.

First of all, we found that mutual learning has a great impact on the model.
Without mutual learning, multi-scale and GCAttention, the accuracy rate is
only 48.36%, which is 8.44% different from the highest accuracy rate. Second, we
found that under the combined effect of multi-scale and GCAttention, our model
also achieved certain results, which improved the accuracy by 2.84% compared
to not using them.

4.4 The Program with GUI

Finally, we made a program (Fig. 3) with a GUI for the model trained on the
dataset we built, where the user can use the mouse to write a mathematical
expression on the drawing board, and then click the Recognize button to get the
LATEX expression.

Fig. 3. The program with GUI for HMER.



292 X. Han et al.

5 Conclusion

In this paper, we improve the performance of models for recognizing handwritten
mathematical expressions by introducing a global contextual attention mecha-
nism and multi-branch mutual learning. We built a dataset ourselves and trained
this model on it with good results. However, handwritten mathematical expres-
sions are very complex, and each person’s handwriting style is different. Whether
it is a single character or the entire expression structure, there are certain dif-
ferences in what everyone writes. Therefore, in the future we will collect more
and more complex data to train our model and improve its robustness.
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