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Abstract
Magnetic resonance imaging (MRI) is widely used in clinical diagnosis due to its high resolution and non-invasive scan-
ning capabilities. However, long scanning times limit its development. To reduce acquisition time and obtain high-quality
reconstructed images, a novel multi-domain MRI reconstruction network that fully utilizes the image domain, k-space, and
wavelet domain is proposed. This network includes a parallel convolutional neural network (CNN) with k-space and wavelet
domain branches, as well as a U-shaped image domain network. Following the parallel dual-domain CNN, a dual-domain
feature alignment module aligns features from the k-space and wavelet domains into a unified representation space, mitigat-
ing artifact impacts. This design enhances the model’s understanding of multi-domain signals and improves generalization.
Additionally, in the image domain, a hierarchical cross-feature enhancement module, based on Nested UNet, incorporates two
cross-attention modules into different hierarchical skip connections of the Nested U-Net to reduce information propagation
loss and enhance feature representation. Deep supervision within the image domain network further boosts the network’s
performance and robustness. Extensive experiments on two public MRI datasets, FastMRI and CC359, as well as the private
clinical dataset, validate the proposed method. Compared to several state-of-the-art deep learning methods, our approach
demonstrates good reconstruction performance in both numerical assessments and visual effects.
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1 Introduction

Magnetic resonance imaging (MRI) is awidely used diagnos-
tic tool in clinical practice due to its non-invasive nature, lack
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of ionizing radiation, and ability to capture multiple param-
eters. However, the speed at which k-space is traversed is
limited by both physiological and hardware constraints [1],
leading to lengthy data acquisition times. This not only
reduces the efficiency of MRI equipment but also causes dis-
comfort for patients and can introduce motion artifacts that
degrade image quality. Therefore, developing accelerated
algorithms to reconstruct high-quality images from under-
sampled k-space data is crucial.

Over the past few decades, several advanced image recon-
struction techniques have been developed to accelerate the
acquisition speed while producing high-quality magnetic
resonance images. These techniques include partial Fourier
transformation [2], parallel imaging techniques (PI) [3],
compressed sensing (CS) techniques [4], low-rank matrix
completion techniques [5], and manifold learning tech-
niques [6], among others. Among these, compressed sensing
MRI (CS-MRI) [7] stands out as a groundbreaking method
that uses prior information about the image to reconstruct
high-quality MR images. Commonly used priors include
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total variation, wavelet transformation, low rank, and dictio-
nary learning. However, the optimization iterations required
to solve the CS-MRI model are computationally expensive.
Additionally, there are limitations such as inadequate priors
and inflexible parameters. Particularly with high acceleration
factors, CS-MRI methods can produce unwanted artifacts
and over-smooth anatomical structures.

Recently, the rapid development and widespread use of
deep learning technology [8–11] have brought attention to
its potential in accelerating MRI reconstruction. Wang et
al. [12] were pioneers in using convolutional neural net-
works (CNN) for reconstructing under-sampled MR images,
providing an end-to-end mapping from zero-filled to fully
sampled images. They trained an offline CNN to speed
up MRI reconstruction. Following their work, many CNN-
based MRI reconstruction methods have been proposed,
which can be categorized into two types: single-domain and
cross-domain methods. Single-domain methods reconstruct
MR images from under-sampled k-space data either in the
image domain or k-space domain. On the other hand, cross-
domain methods leverage the latent relationships between
the image and k-space domains, generally achieving bet-
ter results than single-domain methods. Notable networks
in this field include KIKI-Net [13], W-Net [14], Hybrid-
Cascade-Net [15], DD-DLN [16], MD-Recon-Net [17],
DIMENSION [18], DIIK-Net [19].

Wavelet transform is widely recognized for its appli-
cation in traditional CS-MRI. Lusting et al. [4] were the
pioneers in introducing CS theory to the MRI field, propos-
ing SparseMRI, which integrates the sparse prior of total
variation andwavelet transformation forMRI reconstruction.
Compared to Fourier transformation, wavelet transformation
offers advantages such as multi-directionality, multi-scale,
and multi-resolution capabilities, resulting in better sparse
image representation. Additionally, wavelet transformation
excels at capturing fine image details, which aids in recon-
structing high-quality images. Wang et al. [20] were the
first to apply wavelet transformation in a deep learning-
based method for MRI reconstruction, combining the image
domain, k-space, and wavelet domain within convolutional

CNNs. However, wavelet transformation remains infre-
quently used in deep learning-based methods.

Inspired by the works mentioned above, a novel net-
work for MRI reconstruction based on cross-domain method
which combined k-space domain, wavelet domain and image
domain is proposed. The present study focuses on improv-
ing feature alignment in multi-domain feature fusion, as
misalignment of features from different domains introduces
biases in subsequent processing. Additionally, another focus
is on enhancing the removal of artifacts generated dur-
ing the reconstruction process. The proposed method fully
considers the different feature representation in different
domain, which can be utilized to improve the reconstruc-
tion performance, as shown in Fig. 1. Aiming to reconstruct
the high-quality MRI in low acceleration factor, the pro-
posed network consists of a parallel dual-domain CNN
contains k-space and wavelet domains and a U-shaped image
domain network. After the parallel dual-domains CNN, a
dual-domain feature alignment module (DFAM) is designed
to align the features from k-space and wavelet domains
into a unified representation space and alleviate the impact
of artifacts. This design incorporates the strengths of both
the frequency domain and the wavelet domain. Frequency
domain signals aid in extracting global features from images,
such as textures and edges. Wavelet domain signals help
capture both spatial and frequency information simultane-
ously, making them suitable for extracting local features and
abrupt changes in images, and also assist the model in recog-
nizing noise. Therefore, this design contributes to a deeper
understanding of image signals by the model, enhancing the
model’s generalization capability. Furthermore, a hierarchi-
cal cross feature enhancement module (HCFEM) is used in
image domain to achieve the last reconstructed image. To
mitigate information propagation loss and enhance feature
representation, the design of this module is based on Nested
U-Net [21] and two cross-attention modules are embedded
into the different hierarchical skip connection of the Nested
U-Net. This design can utilize the contextual information
from the encoder to preserve more fine details and edges of
the reconstructed image. Deep supervision in image domain

Fig. 1 Images and their features in different domains
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network is used to guarantee effective utilization of features
at each level and enhance the feature represent ability, while
accelerating the network convergence. Overall, the proposed
model greatly improves the feature representation capability
and enhances the MRI reconstruction performance demon-
strated by extensive experiments on three datasets.

The main contributions of this paper are as follows.

1. A novel multi-domain network that combines k-space
domain, wavelet domain and image domain, which takes
full of the different feature representation in different
domains is proposed for fast magnetic resonance recon-
struction.

2. Adual-domain feature alignmentmodule (DFAM)which
is based on deformable convolution operation is designed
to align the two branches features from parallel CNN into
a unified representation space. The DFAM can not only
fuse the different domain information but also alleviate
the artifacts or deformations from different domains.

3. A hierarchical cross feature enhancement module (HC
FEM) which can minimize information propagation loss
and enhance feature representation in image domain
network is introduced reconstruct the final magnetic res-
onance image. Then, deep supervision is used to promote
the network’s capability of feature representation and
accelerate the network convergence.

2 Related works

2.1 Single domainMRI reconstruction

The first CNN for MRI reconstruction proposed by Wang et
al. [12] has promoted the rapid development of deep learning-
based reconstruction method. Schlemper et al. [22] designed
a deep cascaded of convolutional neural network (DC-CNN)
to reconstruct dynamic cardiac MR image in image domain
and exploited a data consistency (DC) to fully use the real
collected k-space data to remedy the predicted data. Qin et
al. [23] proposed a convolutional recurrent neural network
(CRNN) which reconstructs high-quality cardiac MR image
from highly under-sampled k-space data by jointly utilizing
the dependency of time series and the iterative properties
of traditional optimization algorithm. Some typical CNN
structures such as UNet [24], GAN [25], ResNet [26] are
applied toMRI reconstruction in image domain. Aghabiglou
et al. [27] firstly introduced the densely connected residual
block into UNet in MR image reconstruction make the net-
work deeper and increase the number of model parameters
without the consequent training difficulties and vanishing
gradient problems. Chatterjee et al. [1] designed a modified
ResNet as the network backbone to remove artifacts from
the highly under-sampled Cartesian and radial data. Several

GAN-based methods were developed for MRI reconstruc-
tion, such as DAGAN [28], RefineGAN [29], SEGAN [30],
which adopted the UNet-like model as the generators and
combined the perceptual, cyclic or structure-enhanced loss
functions to recover the image details. However, these meth-
ods might not be robust enough for specific types of noise
or artifacts. Some general network structures may not be
optimized for MRI reconstruction tasks and could be inade-
quate in restoring certain details. Additionally, some models
primarily focus on artifact removal, which may lead to defi-
ciencies in image detail recovery.

With the breakthrough of Transformer [31] in natural
language processing, Transformer and its variant version
have been applied to computer vision and medical image
analysis field. Due to the good global context modeling
capability to learn the long-rang dependencies of features
effectively, some Transformer-based MRI reconstruction
methods are developed. Huang et al. [32] proposed a novel
parallel imaging coupled Swin transformer-based model
(SwinMR) for fast MRI reconstruction, which utilizes Swin
transformer [33] structure to achieve a trade-off for global
and local information of images. Furthermore, Huang et
al. [34] developed a new Transformer structure for coupling
fast MRI problem that coupled Shifted Windows Trans-
former with UNet to reduce the network complexity and
incorporated deformable attention to construe the network
explainablity. Additionally, Huang et al. [35] designed a
Swin transformer-based GAN (STGAN) model with dual-
discriminator structure for promoting the edge and texture
preservation of reconstructed MR image. Fabian et al. [36]
developed a hybrid architecture of CNN and Transformer to
balance computational cost and reconstruction performance.
In our previous work, a model combining CNN and Trans-
former was proposed for cine MRI reconstruction [37]. Guo
et al. [38] proposed a lightweight recurrent Transformer to
improve the parameter efficiency of the network. Although
Transformer-based methods can extract more features and
improve performance, some approaches remain complex and
may affect practical application efficiency. These methods
might be more sensitive to noise and may not effectively
remove it. Additionally, Transformer-based methods typi-
cally require more diverse data for training; otherwise, they
may overfit and affect the model’s generalization ability.

These MRI reconstruction models are primarily catego-
rized into four types: CNN-based models, RNN-based mod-
els and their variants, GAN-based models, and Transformer-
based models and their variants. In terms of structure and
complexity, CNN and conventional RNN models are rela-
tively simple, making them easier to train and implement,
whereas GAN and Transformer models have more complex
structures and are harder to train. Regarding noise and arti-
fact handling, CNN and RNNmodels may lack robustness in
dealing with specific types of noise or artifacts, while GANs
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excel in detail recovery but are not robust against certain
noises. Transformers can extract more features but are sensi-
tive to noise. In terms of data requirements, CNN and RNN
models demand relatively lowdata diversity.GANandTrans-
former models usually require more diverse data for training,
otherwise, they are prone to overfitting.

Although these single domain MRI reconstruction meth-
ods based on deep learning outperform the traditional
CS-MRI methods as their data-driven feature extraction
and nonlinearity properties, more different features from
different domains are not fully leveraged to enhance the
reconstruction performance. Therefore, a convolution-based
network is employed to extract information from the fre-
quency and wavelet domains. By fully aligning and fusing
these features, the model uncovers more information and
reconstructs high-quality magnetic resonance images. This
approach also avoids using Transformer structures, balanc-
ing efficiency and performance.

2.2 Cross domainMRI reconstruction

As for cross domain method, the complementary informa-
tion from different domains, i.e., image domain and k-space
domain, benefits for reconstructing high-quality images. Ini-
tially, Eo et al. [13] proposed the KIKI-Net on k-space,
image, k-space, and image sequentially for MRI reconstruc-
tion,which exhibits superior performance over single domain
methods in terms of restoring tissue structures and remov-
ing aliasing artifacts. Souza et al. [14] developed the W-Net
which is composed of a complex-valued residual UNet in
k-space domain and a real-valued UNet in image domain.
Souza et al. [15] introduced a cascaded convolutional neu-
ral network based on mixed learning of image domain and
k-space domain, which consists of six CNN blocks with
the same structure and alternate convolutional processing of
image domain and frequency domain information. Ran et
al. [17] designed aMRI dual-domain reconstruction network
(MD-Recon-Net) which contains two parallel and inter-
active branches simultaneously operating on k-space and
spatial-domain data. Liu et al. [19] proposed a full reso-
lution deep interaction framework between image domain
and k-space domain (DIIK-Net) with a few parameters for
MRI reconstruction. Zhao et al. [39] introduced a Swin
Transformer-based dual-domain GAN (SwinGAN), which
consists of a frequency-domain generator and an image-
domain generator for effectively capturing the long-distance
dependencies.

Moreover, there are several methods that combine wavelet
transform. Wang et al. [20] first used CNNs in the image
domain, k-space and wavelet domain sequentially (IKWI-
Net) for under-sampled MRI reconstruction, which can take
advantage of the feature representation in different domains

and achieve some improvements. Tong et al. [40] presented
HIWDNet, which combines the image domain and wavelet
domain for MRI reconstruction. Aghabiglou et al. [41] pro-
posed a densely connected wavelet-based autoencoder to
fully exploit wavelet domain information.

Cross-domain magnetic resonance reconstruction meth-
ods aremainly divided into two categories: frequency domain
methods and wavelet domain methods. Frequency domain
methods focus on alternating processing between the image
domain andk-space,whilewavelet domainmethods combine
information from the image domain and the wavelet domain.
In terms of information utilization, frequency domain meth-
ods use complementary information from the image and
frequency domains, whereas wavelet domain methods uti-
lize multi-scale wavelet information. From the perspective
of application scenarios, frequency domain methods are
suitable for scenarios requiring the recovery of complex
frequency information and long-range dependencies, while
wavelet domain methods are suitable for capturing multi-
scale features and details.

However, although these methods utilize multi-domain
information, most of them simply fuse multi-domain data,
which can easily lead to biases. Some methods, such as
W-Net and SwinGAN, rely on optimization within specific
domains, like k-space or image domain, and may perform
well with certain types of data but may not meet expec-
tations with other types. Furthermore, most methods focus
solely on reconstruction without addressing the noise gener-
ated during the reconstruction process, particularly the biases
that may arise from unaligned feature fusion. Therefore, in
addition to designing a multi-domain alignment module, the
HCFEM module is also designed to eliminate these noises
and retain more details and edge information in the recon-
structed images.

3 Method

3.1 Problem formulation

TheproblemofMRI reconstruction fromunder-sampled data
can be described as:

y = M
⊙

Fx + ε (1)

where x represents the fully-sampled MR image, F denotes
the Fourier transform, M is the under-sampled mask,

⊙

represents element-wise multiplication, and ε is the noise
generated during the data acquisition process.

To solve this ill-posed inversion problem, deep learning is
introduced to reconstruct the under-sampled MR image. The
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optimization formulation for this process is as follows:

x̂ = argmin
x

1

2

∥∥∥y − M
⊙

Fx
∥∥∥
2

2
+ λL(θ) (2)

where x̂ represents the reconstructed MR image, L(θ) is the
prior regularization term, and λ is the regularization coeffi-
cient. In deep learning-basedmethod, the regularization term
L(θ) is defined as follows:

L(θ) = argmin
x

1

2

∥∥x − fDL(xz f |θ)
∥∥2
2 (3)

where fDL represents the forward propagation in deep learn-
ing, and θ represents the learnable parameters. xz f denotes
the zero-filled MR image after under-sampling.

3.2 Proposedmethods

To reconstruct the full-sampled data from under-sampled
MRI image, a multi-domain network framework with image
domain, k-space and wavelet domain is proposed. As shown
in Fig. 2., the proposed network consists of two parts, one
is a parallel k-space and wavelet domain CNN and another
is a U-shaped image domain network. Zero-filled images are
used as the input of the proposed network. In the wavelet
domain branch, the original input data is decomposed into
four different sub-bands represented as Wu via the discrete
wavelet transform (DWT), as shown in Fig. 3. Meanwhile, in
the k-space domain branch, the original input data is trans-
formed to frequency signal denoted as Ku by fast Fourier
transform (FFT). The wavelet signal Wu and frequency sig-
nal Ku are separately reconstructed by a high-performance
denoising network DIDN [42] to achieve the reconstructed
wavelet signal Wr and the reconstructed k-space signal Kr .
Then, Wr and Kr are inverse transformed to images Iw and
Ik by inverse discrete wavelet transform (iDWT) and inverse
fast Fourier transform (iFFT), respectively. To effectively
eliminate artifacts and noise, both Iw and Ik are further recon-
structed using UNet networks to generate the signals, Iwr

and Ikr respectively. CNN in k-space domain is utilized for
k-space completion, while CNN in wavelet domain is used
to extract low-frequency and high-frequency features sepa-
rately at the specific location [20]. To fuse the two branch
results and alleviate the artifacts, a multi-domain alignment
module is designed to align the different domain signal into
a unify representation space Ia . After that, Ia is fed into the
hierarchical cross feature enhancement module to obtain the
final reconstruction.

3.3 Dual-domain feature alignment module

To fuse the dual-domain CNN and alleviate the artifacts or
deformations from different domains, a dual-domain feature
alignment module (DFAM) is designed as shown in Fig. 4.
Feature alignment techniques [43] based on deformable con-
volution network (DCN) [44] have been applied to video
super-resolution reconstruction, which can perform local
deformations on the input during the convolution process.
Compared to traditional convolution operations, deformable
convolution can better adapt to geometric variations in the
input, thereby improving the performance of the model.
DFAMreceives the reconstructed image Iwr from thewavelet
domain and the reconstructed image Ikr from the k-space
domain as the input. Iwr is processed by a convolution oper-
ation to generate the featuremapswith three times thenumber
of channels, which is split into three feature maps o1, o2, and
mwith the same number of channels as Iwr . Then, the feature
maps o1 and o2 are concatenated to form a feature map with
twice the number of channels as Iwr , which serves as the
offset. The feature map generated by applying the sigmoid
operation to m is served as the modulation mask. Finally, the
input Ikr , offset, and modulation mask are processed by a
deformable convolutional network to obtain the aligned fea-
ture map Ia . The process is formulated as:

o1, o2,m = Chunk(Conv(Iwr )) (4)

o = Cat(o1, o2) (5)

Fig. 2 The overall architecture of the proposed method. The pipeline mainly includes frequency domain branch and wavelet domain branch,
dual-domain feature alignment module (DFAM) and Hierarchical cross feature enhancement module (HCFEM)
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Fig. 3 A is the fully sampled MR image, B is the wavelet sub-bands of A, C is the under-sampled MR image, and D is the wavelet sub-bands of C

â = Sigmoid(m) = 1

1 + e−m
(6)

Ia = DCN (Ikr , o, m̂) (7)

where Conv represents the convolution operation, Chunk
represents the split operation, o1, o2, and m are the feature
maps after splitting.Cat denotes the concatenation operation,
Sigmoid is the logistic function operation. DCN represents
deformable convolutional network.

3.4 Hierarchical cross feature enhancementmodule

In image domain reconstruction, a hierarchical cross feature
enhancementmodule as shown in Fig. 5. is designed to obtain
the final reconstruction results. Nested UNet as an extended
version of the traditionalUNet, nests the encoder and decoder
layers of different scale UNet to form multiple hierarchi-
cal sub-networks, which can enhance the network’s ability
to capture feature information in different scales. Further,
to improve information propagation and optimize feature
fusion, two cross-attention (CA) modules are introduced in
the skip connections at different encoder-decoder hierarchi-
cal in Nested UNet.

The cross-attention module comprises two main compo-
nents: Query and Key-Value mapping. The feature map x
from the encoder generates the query feature map Q by a

convolutional operation, while the feature map y from the
decoder generates the key feature map K and the value fea-
ture map V by two convolutional operations, respectively.
The similarity matrix S is calculated by the query feature
map Q and the key feature map K, and then normalized to
obtain the attentionweightmatrixA. Additionally, thematrix
S can be multiplied by a learnable weight Temp to adjust the
weights of each attention head. Next, the attention weight
matrix A is multiplied by the value feature map V to obtain
the cross-attention feature map C. The expressions for this
process are as follows:

A = Sof tmax((Q
⊗

K) × T emp) (8)

C = A
⊗

V (9)

where
⊗

denotes matrix multiplication.

3.5 Deep supervision

In the image domain network, deep supervision is introduced
to guarantee effective utilization of features at each hierar-
chy of HCFEM and accelerate the model convergence. Each
decoder loss L0, L1, L2, L3 of the HCFEM is added as
the total loss to fuse the multi-scale feature information and

Fig. 4 Dual-domain feature
alignment module. The input to
this module includes the
frequency branch feature map
and the wavelet branch feature
map. The core module is the
deformable convolution, which
differs from the regular
convolution due to its offsets.
The output is the feature map
with aligned features
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Fig. 5 Hierarchical cross feature enhancement module

understand the image semantics. The total loss is:

L = L0 + L1 + L2 + L3 (10)

4 Experiment and results

4.1 Datasets

Two publicly available datasets, namely FastMRI [45] and
Calgary-Campinas-359 (CC-359) [46], and our private clin-
ical dataset are adopted to demonstrate the reconstruction
performance of the proposed method. The FastMRI dataset
comprises a large number of knee jointMRI images obtained
fromover 1,500 fully sampledknee jointMRIs.These images
were acquired using 3.0 and 1.5 Tesla magnets, including
coronal proton density-weighted images with andwithout fat
suppression. The goal of theCC-359 dataset is to facilitate the
development of innovative and fast deep learning models for
reconstructing, processing, and analyzingbrainmagnetic res-
onance images within the scientific community. This dataset
includes data from 359 subjects scanned with scanners from
three different vendors (GE, Philips, and Siemens), and it
contains T1 volumes acquired at twomagnetic field strengths
(1.5T and 3.0T). The scans correspond to scans of elderly
subjects. Additionally, a private clinical knee MRI dataset is
collected from a hospital in Shanghai, which was acquired
using a 1.5T United Imaging uMR-588 scanner. This dataset
comprises 126 patients with a total of 5,025 images. Due to
the slower nature of T2 imaging compared to T1, T2 images
are selected for testing, which are scaled to 256×256.

4.2 Implementation details

For FastMRI dataset, the MR data acquisition process is
modeled by under-sampling the full sampled k-space data
using 1D Gaussian mask. The under-sampling is carried out
using 4-fold and 8-fold acceleration factors. And for CC-
359 dataset, 2D Gaussian mask is used to under-sample the
full sampled k-space data. The under-sampling is carried out
using 5-fold and 10-fold acceleration factors. The training
is initiated from created real-valued zero-filled images. The
private clinical dataset is only adopted for testing, whose
under-sampling manner is as CC-359 dataset. Six state-of-
art methods, including U-Net [24], DC-CNN [22], KIKI-
Net [13], XPD-Net [47], T2-Net [48], and SwinMR [32] are
used to compared with the propose method. For a fair com-
parison, all networks are evaluated with the same setting for
training on two public datasets.

The model is designed and implemented in Python
3.8 using PyTorch 1.12.1, a machine learning framework.
Additionally, PyTorch-Lightning 1.7.5, an efficient PyTorch-
based framework, is employed. The model is trained on a
GPU server comprising an Intel Core i9-10900XCPU, 32GB
of RAM in total, and Nvidia RTX3080 GPUs with a com-
bined VRAM of 20GB. During the training process, the data
batch size is determined based on the data size for optimal
memory usage. The number of threads for data reading is set
as 16. The initial learning rate is 1e-3, and it is dynamically
adjusted with the ReduceLROnPlateau strategy. AdamW is
used as the optimizer. The model undergoes 100 epochs of
training conducted with double precision.
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Additionally, the model is developed in an Ubuntu system
environment using the PyCharm editor and an Anaconda vir-
tual environment. TheGPUversion of PyTorchwith theCuda
11.7 library is used. TorchMetrics calculates the evaluation
metrics, and TensorBoard records these metrics during train-
ing. OpenCV-Python along with NumPy are employed for
image reading and processing. All model training employs
five-fold cross-validation, and the error in our comparative
experiment results is presented.

4.3 Evaluationmetrics

To evaluate the quality of the proposed method for magnetic
resonance image reconstruction, three commonly used image
quality assessment metrics are employed, namely, Struc-
tural Similarity Index (SSIM) , Peak Signal-to-Noise Ratio
(PSNR), and Normalized Mean Squared Error (NMSE).
SSIM is defined as follows:

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ 2
x + σ 2

y + c2)
(11)

where μx , μy , σx , σy , and σxy represent the local mean,
standard deviation, and cross-covariance of images x and y,
respectively. c1 = (k1L)2 and c2 = (k2L)2, where L is the
dynamic range of pixel values, and k1 = 0.01 and k2 = 0.03.
PSNR is defined as:

PSNR = 10 ln
R2

MSE (12)

MSE = 1

M × N

M∑

i=1

N∑

j=1

(I (i, j) − R(i, j))2 (13)

where I (i, j) denotes the pixel value of the original image
at position (i, j), R(i, j) represents the pixel value of the
reconstructed image at position (i, j), and R represents the

maximum fluctuation in the input image. NMSE is defined
as:

NMSE = MSE
∑M

i=1
∑N

j=1 I (i, j)
2

(14)

4.4 Experimental results on the public dataset
FastMRI

Table 1 presents the numerical assessment based on PSNR,
SSIM, NMSE values of different methods on FastMRI
dataset using 1D Gaussian under-sampling mask. Compared
to the zero-filled images, all the sevenmethods achievemuch
better performance. The proposed method achieves superior
performance over other methods at both 4-fold and 8-fold
acceleration factors. For the 4× acceleration, the proposed
method enhances the SSIMmetric by 0.12% and PSNRmet-
ric by 0.64dB compared to the suboptimal model T2-Net
model among the other models. For the 8× acceleration, the
proposed method improves the SSIM metric by 0.42% and
PSNR metric by 0.62dB compared to the suboptimal model
T2-Net model. Figure 6 provides a visual representation of
the quantitative results under 4× and 8× acceleration factors,
respectively. The numerical results means that the proposed
method can accelerate the MRI acquisition better than the
other state-of-art methods.

The reconstruction MR images of different methods and
the absolute differences between reconstruction and the
ground truth under 4× and 8× acceleration rates are dis-
played in Figs. 7 and 8. The local enlarged regions of different
methods also are given. From the visual effects, the results
of the proposed method are closer to ground truth than the
other compared methods. Especially under the low acceler-
ation factor, the absolute difference between reconstruction
and the ground truth is less. The proposed method can recon-
struct the high-quality MR images with least artifacts and
more details.

Table 1 Quantitative comparison results on the FastMRI dataset

Method 4× 8×
PSNR (dB) ↑ SSIM (%) ↑ NMSE ↓ PSNR (dB) ↑ SSIM (%) ↑ NMSE ↓

Zero-filled 26.84 63.48 0.0589 24.74 55.36 0.0683

U-Net 30.94 ± 1.23 73.22 ± 2.28 0.0307 ± 0.0142 29.12 ± 1.14 67.32 ± 3.41 0.0461 ± 0.0121

DC-CNN 30.49 ± 1.19 71.13 ± 2.45 0.0345 ± 0.0128 28.94 ± 1.35 66.46 ± 4.53 0.0478 ± 0.0198

KIKI-Net 30.64 ± 1.27 71.79 ± 3.38 0.0328 ± 0.0167 28.87 ± 1.22 66.32 ± 2.43 0.0487 ± 0.0173

XPD-Net 30.89 ± 1.06 72.52 ± 2.52 0.0311 ± 0.0126 29.02 ± 1.12 66.83 ± 2.22 0.0471 ± 0.0139

T2-Net 31.22 ± 1.13 73.94 ± 2.29 0.0286 ± 0.0134 29.84 ± 1.19 67.86 ± 3.44 0.0449 ± 0.0146

SwinMR 30.96 ± 1.25 73.28 ± 3.97 0.0304 ± 0.0150 29.06 ± 1.24 67.25 ± 4.49 0.0459 ± 0.0182

ours 31.87 ± 1.16 74.06 ± 2.16 0.0251 ± 0.0133 30.46 ± 1.06 68.28 ± 2.19 0.0431 ± 0.0112

The bold entries in the table indicate that the value represents the best performance
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Fig. 6 Visualization of quantitative results of different methods on FastMRI dataset under 4× and 8× acceleration

4.5 Experimental results on the public dataset
CC-359

Another compared experiments are conducted on theCC-359
dataset under 5× and 10× acceleration conditions using 2D
Gaussian under-sampling mask. Table 2 lists the numerical
assessments based on PSNR, SSIM, NMSE values of dif-
ferent methods. The proposed method outperforms the other
methods at both 5× and 10× acceleration rates. Specifically,
for 5× acceleration, the proposed method exhibits a 3.90%

improvement in the SSIMmetric and a 1.21dB improvement
in the PSNRmetric compared to the suboptimal model XPD-
Net model. Similarly, for 10× acceleration, our proposed
methoddemonstrates a 3.64%enhancement in theSSIMmet-
ric and a 0.85dB improvement in the PSNRmetric compared
to the suboptimal model XPD-Net model. The quantitative
comparison results are illustrated inFig. 9.All the experiment
results highlight the superiority of our proposed method.

The reconstruction MR images of different methods and
the absolute differences between reconstruction and the

Fig. 7 Qualitative comparison results of different methods on the FastMRI dataset under 4× acceleration
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Fig. 8 Qualitative comparison results of different methods on the FastMRI dataset under 8× acceleration

ground truth under 5× and 10× acceleration rates on the
CC-359 dataset are displayed in Figs. 10 and 11. The local
enlarged regions of different methods also are given. From
the visual effects, the proposed method can consistently
achieves the superior reconstruction performance, even with
the more aggressive under-sampling rates, when compared
to other methods. The results in terms of numerical measure-
ment and visual effect demonstrate that the proposed method
can accelerate the magnetic resonance imaging with high
imaging quality.

4.6 Experimental results on the private clinical
dataset

To assess the generalization of the proposed method, all
the comparison models trained on the CC-359 dataset are
tested by using a separate private clinical dataset. Table 3
presents the numerical evaluation results based on PSNR,
SSIM, NMSE under the 5× and 10× acceleration factors.
For a 5× acceleration factor, the proposed method demon-
strated a 7.8% improvement in the SSIMmetric and a 2.59dB

Table 2 Quantitative comparison results on the CC-359 dataset

Method 5× 10×
PSNR (dB) ↑ SSIM (%) ↑ NMSE ↓ PSNR (dB) ↑ SSIM (%) ↑ NMSE ↓

Zero-filled 20.17 52.21 0.3568 18.32 45.61 0.5281

U-Net 30.14 ± 2.31 85.18 ± 1.80 0.0328 ± 0.0084 28.69 ± 2.42 81.42 ± 2.28 0.0415 ± 0.0086

DC-CNN 30.46 ± 2.46 86.25 ± 1.94 0.0192 ± 0.0098 29.34 ± 1.45 83.26 ± 1.27 0.0301 ± 0.0033

KIKI-Net 31.51 ± 1.88 86.59 ± 1.16 0.0164 ± 0.0046 29.49 ± 2.05 83.91 ± 1.86 0.0210 ± 0.0057

XPD-Net 31.48 ± 2.17 88.18 ± 1.72 0.0168 ± 0.0074 29.23 ± 2.03 85.91 ± 1.81 0.0230 ± 0.0051

T2-Net 30.42 ± 1.13 85.60 ± 0.85 0.0312 ± 0.0035 29.88 ± 1.98 81.48 ± 1.39 0.0400 ± 0.0046

SwinMR 29.16 ± 2.15 82.88 ± 1.54 0.0349 ± 0.0048 28.09 ± 2.33 79.57 ± 1.89 0.0428 ± 0.0060

ours 32.69 ± 1.64 92.08 ± 1.02 0.0162 ± 0.0041 30.08 ± 1.43 89.55 ± 1.18 0.0188 ± 0.0029

The bold entries in the table indicate that the value represents the best performance
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Fig. 9 Visualization of quantitative results of different methods on CC-359 dataset under 5× and 10× acceleration

improvement in the PSNR metric compared to the subopti-
mal model DC-CNN model. For a 10× acceleration factor,
the proposed method exhibited a 6.78% improvement in the
SSIM metric and a 4.4dB improvement in the PSNR met-
ric compared to the suboptimal model U-Net model. The
quantitative comparison results are depicted in Fig. 12. The
reconstructionMR images and the errormaps between recon-
struction and the ground truth under 5× and 10× acceleration
conditions on the private clinical dataset are displayed in
Figs. 13 and14.Thenumericalmeasurement andvisual effect
demonstrate that the proposed method has robust generaliza-
tion capability and better reconstruction performance.

4.7 Ablation study

To demonstrate the feasibility and effectiveness of dual-
domain feature alignment module (DFAM) and the hier-
archical cross feature enhancement module (HCFEM) of
the proposed network, the ablation studies are conducted
using CC-359 dataset, as shown in Table 4. In the pro-
posedmodel,DFAMaligns the features fromk-space domain
and the wavelet domain into a shared representation space,
which can effectively remove the artifacts and enhance the
models understanding capability. CAM in the HCFEM can
reduce information transmission loss and strengthen feature

Fig. 10 Qualitative comparison results of different methods on the CC-359 dataset under 5× acceleration
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Fig. 11 Qualitative comparison results of different methods on the CC-359 dataset under 10× acceleration

representation. Twomodules benefit for enhancing the recon-
struction performance.

To take advantage of different domains, the parallel CNNs
with k-space domain and wavelet domain is designed. The
ablation study about using k-space domain and wavelet
domain is conducted on CC-359 dataset, as shown in Table 5.
From the numerical results, it can be seen that the dual-
domain structure has some improvement in construction
performance compared to single domain.

4.8 Experiment comparing HCFEMwith other
advancedmethods

To better demonstrate the superiority of our proposed hier-
archical cross feature enhancement module (HCFEM), the
related experiments are conducted. Specifically, the HCFEM
in the proposed model is replace with simple convolutional
blocks and similar convolutional modules from MD-Recon-
Net [17] and DIIK-Net [19]. Through this experiment, the

Table 3 Quantitative comparison results on the private clinical dataset

Method 5× 10×
PSNR (dB) ↑ SSIM (%) ↑ NMSE ↓ PSNR (dB) ↑ SSIM (%) ↑ NMSE ↓

Zero-filled 22.13 70.29 0.1490 20.69 63.74 0.2260

U-Net 24.37 ± 2.52 78.34 ± 3.16 0.0439 ± 0.0138 24.17 ± 2.94 76.06 ± 2.74 0.0544 ± 0.0107

DC-CNN 26.55 ± 2.11 79.11 ± 2.64 0.0299 ± 0.0109 24.86 ± 3.20 75.92 ± 3.17 0.0452 ± 0.0126

KIKI-Net 26.36 ± 1.86 78.95 ± 2.05 0.0301 ± 0.0043 25.70 ± 1.24 74.11 ± 1.54 0.0391 ± 0.0053

XPD-Net 20.37 ± 1.53 72.97 ± 1.12 0.1021 ± 0.0024 21.56 ± 1.61 66.71 ± 2.31 0.1883 ± 0.0064

T2-Net 20.09 ± 2.85 62.20 ± 3.49 0.1771 ± 0.0163 20.75 ± 3.84 47.63 ± 3.27 0.2627 ± 0.0128

SwinMR 20.21 ± 1.93 62.98 ± 2.41 0.1830 ± 0.0101 19.58 ± 2.39 43.57 ± 2.43 0.2206 ± 0.0082

ours 29.14 ± 1.64 86.91 ± 1.16 0.0349 ± 0.0034 28.57 ± 2.01 82.84 ± 2.55 0.0389 ± 0.0088

The bold entries in the table indicate that the value represents the best performance
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Fig. 12 Visualization of quantitative results of different methods on private clinical dataset under 5× and 10× acceleration

performance of HCFEM is further evaluated. The model in
this experiment is trained on the CC359 dataset and tested
on the private clinical dataset. The experimental results in
Table 6 show that our HCFEM not only outperforms sim-
ple convolutional blocks but also performs slightly better
than advanced convolutionalmodules proposed in someMRI
reconstruction literature.

4.9 Experiments on loss function weights

Experiments are conducted to verify the effects of the impact
of different weights for L0, L1, L2, and L3 on model perfor-
mance. However, since there are four losses, the final output
L0 with the other three losses generated by deep supervi-
sion is juxtaposed. Therefore, the model loss is expressed

Fig. 13 Qualitative comparison results of different methods on the private clinical dataset under 5× acceleration
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Fig. 14 Qualitative comparison results of different methods on the private clinical dataset under 10× acceleration

Table 4 The effect of DFAM
and CAM on the performance of
the proposed method on the
CC-359 dataset

DFAM CAM 5× 10×
PSNR SSIM NMSE PSNR SSIM NMSE

� � 31.97 91.26 0.0174 29.14 87.04 0.0245

� � 32.48 91.58 0.0169 29.74 88.49 0.0228

� � 32.35 91.51 0.0170 29.58 88.15 0.0232

� � 32.69 92.08 0.0162 30.08 89.55 0.0188

The bold entries in the table indicate that the value represents the best performance

Table 5 The effect of using
k-space or wavelet domain alone
on the reconstruction
performance of the proposed
method on the CC-359 dataset

K Wavelet 5× 10×
PSNR SSIM NMSE PSNR SSIM NMSE

� � 31.88 91.36 0.0176 29.43 88.89 0.0215

� � 31.94 91.54 0.0171 29.51 89.02 0.0206

� � 32.69 92.08 0.0162 30.08 89.55 0.0188

The bold entries in the table indicate that the value represents the best performance
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Table 6 Experimental results
comparing HCFEM with other
advanced methods

Fusion modules 5× 10×
PSNR SSIM NMSE PSNR SSIM NMSE

CNN block 26.73 79.86 0.0362 25.11 76.24 0.0427

MD-Recon-Net [17] 27.94 82.43 0.0417 27.04 80.59 0.0471

DIIK-Net [19] 28.14 83.27 0.0351 27.42 81.39 0.0395

ours 29.14 86.91 0.0349 28.57 82.84 0.0389

as L = αL0 + β(L1 + L2 + L3). Experiments focusing
on the weights α and β are performed. The model in these
experiments is trained on the CC359 dataset and tested on the
private clinical dataset. As shown in the experimental results
in Table 7, the impact of applying different weights to the
loss function on model performance is minimal. However,
when the weight of L0 decreases, there is a slight increase in
performance degradation.

4.10 Uncertainty estimation

Despite the improvements in performance achieved by the
proposed model, attention needs to be paid to the uncer-
tainty of its predictions. Currently, several advancedmethods
for uncertainty estimation in deep learning have been pro-
posed [49, 50]. Experiments are conducted on the CC359
dataset and the private clinical dataset using an evidence-
based uncertainty estimation method tailored to the task’s
characteristics. The specific uncertainty estimation method
is as follows:

ei = Fevi (Frec(xi )) = e
tanh(Frec(xi ))

τ (15)

ui = K
∑K

k=1 e
k
i + 1

(16)

where Fevi (·) is the transformation function, Frec(·) is the
proposedMRI reconstruction model, xi is the i-th input sam-
ple, 0 < τ < 1 is the scaling factor, ei is the evidence vector,
K is the number of categories, and ui is the uncertainty esti-
mation result.

The uncertainty evaluation experiment is performedon the
private clinical dataset using the model trained on the CC359
dataset. The estimation results are shown in Fig. 15. It can be
seen from the figure that the reconstruction certainty is lower
at the edges of the organs in the image. This is a problem that
many related studies highlight as needing attention. Novel

methods are planned to be designed in the future to mitigate
this issue.

4.11 Testing on images of different sizes

Since our model is trained on a dataset of 256× 256 images,
which is the most common MRI resolution in clinical prac-
tice, the model’s performance is also tested on test sets of
images with different sizes. Specifically, we test the model
trained on the CC359 dataset using our private clinical
dataset. The experimental results are shown in Table 8. The
test dataset is processed in twoways: one set of images is ran-
domly resized to 0.5-1 times the original size, and the other
set is randomly resized to 1-2 times the original size. The
experimental results show that the proposed model exhibits
a certain degree of adaptability to minor scale variations in
the images, with minimal impact on performance. For test
images smaller than the training images, which are directly
upscaled to the training image size, which does not result
in any loss of image information and therefore has almost
no impact on reconstruction performance. The experimental
results even show a slight improvement in performance. For
test images slightly larger than the training images, no resiz-
ing is necessary, and they can be directly input into the model
for reconstruction, with experimental results showing only a
small performance loss. However, if the test image size is
much larger than the training image size (a rare occurrence
in clinical practice), it is likely to affect reconstruction per-
formance. A possible solution for this is to divide the large
image into several smaller images, reconstruct each small
image, and then stitch them together to form the large image.

4.12 Model inference time

The inference time of a model, which is the time required
for the model to process input data and generate output

Table 7 Experimental results of
different loss function weights

Fusion modules 5× 10×
α β PSNR SSIM NMSE PSNR SSIM NMSE

0.5 1.0 29.01 86.75 0.0368 28.43 82.65 0.0418

1.0 0.5 29.09 86.84 0.0362 28.51 82.78 0.0401

1.0 1.0 29.14 86.91 0.0349 28.57 82.84 0.0389
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Fig. 15 Experiments on the proposed model using the CC359 dataset and our private clinical dataset employ the evidence-based uncertainty
estimation method

results, directly impacts the performance and user experi-
ence of an application. For MRI, it is essential for the model
to have a certain level of real-time capability. In other words,
the model’s inference time should be less than the signal
acquisition time of the MRI equipment to ensure maximum
efficiency. Therefore, the inference time of our model is
examined under different hardware conditions and various
modes. Specifically, experiments are conducted on three dif-
ferent GPUs, including the NVIDIA GeForce RTX 3080,
RTX 2080 Ti, and GTX 1080 Ti. Additionally, the inference
time is investigated under parallel conditions and with model
quantization. The specific experimental results shown in
Table 9 indicate that the quantized model running on the
RTX 3080 performs the best. Given the slight performance
loss incurred by quantization, parallel inference on the RTX
3080 GPU is deemed to offer an optimal cost-performance
ratio.

5 Discussion

The qualitative and quantitative results from the extensive
experiments demonstrate the superiority and generalization
capability of the proposed method. The proposed method

can achieve the good performance with three reasons. First,
the proposed method take full advantages of different fea-
tures from the image domain, k-space domain, and wavelet
domain, which benefits the model to obtain better recon-
struction MR images with more details and structures.
The multi-domain architecture design also can enhance the
model’s understanding of the underlying image represen-
tation, thereby improving its generalization. Second, the
deformable alignment module reduces the disparity in fea-
ture representations across different domains by aligning the
k-space domain and wavelet domain features into a uni-
fied representation space. This alignment enables the model
to better understand and utilize information from different
domains. Third, the introduction of the HCFEM and the
design of cross-attention modules between different hierar-
chies of encoders and decoders facilitate the transfer and
integration of information across various levels. This mod-
ule reduces information loss during transmission, enhances
feature representation, and improves the model’s robustness.

Specifically, the experimental results show that Transfor
mer-based such as T2-Net and SwinMR perform well on
the large-scale FastMRI dataset but poorly on the smaller
CC-359 dataset. It means that Transformer-based methods

Table 8 The impact of different
test data sizes on model
performance

Image Size 5× 10×
PSNR SSIM NMSE PSNR SSIM NMSE

256 × 256 29.14 86.91 0.0349 28.57 82.84 0.0389

Random 1 2× 28.46 86.05 0.0487 27.32 81.92 0.0497

Random 0.5 1× 29.21 86.98 0.0337 28.68 82.92 0.0368
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Table 9 The inference time of
the proposed model under
different hardware conditions
and various modes

GPU device Inference time
(ms per image)

Parallel inference time
(ms per image)

Quantized inference time
(ms per image)

RTX 3080 42.8 ± 0.6 16.6 ± 0.3 8.1 ± 0.8

RTX 2080Ti 52.4 ± 0.5 24.2 ± 5.3 19.6 ± 2.1

GTX 1080Ti 78.7 ± 1.3 36.8 ± 3.7 28.4 ± 4.3

commonly require a larger scale of training data. How-
ever, when tested on our private clinical test set with
a domain gap from the training data, Transformer-based
methods exhibit significantly poor performance, indicating
their limited generalization capabilities. Additionally, the
experimental results also indicates that CNN-based methods
outperform Transformer-based methods in terms of general-
ization.

Although the proposed method shows its advantages, it
still has limitations. The first is the k-space domain CNN
branch and the wavelet domain CNN branch is relatively par-
allel. The interactive relationship between each domain are
notwell studied. Second, 1DGaussian and 2DGaussian sam-
pling masks are used to generate the under-sampled images
in this paper. Some other masks, like Cartesian, radial, Pos-
sion and learnable masks should be utilized to generate the
under-sampled images and improve the performance.

6 Conclusion

In this paper, a novel network for MRI reconstruction based
on cross-domain method which combined k-space domain,
wavelet domain and image domain to reconstruct MRI from
under-sampled k-space data is proposed. The proposed net-
work is composed of a parallel CNN with k-space domain
branch and wavelet domain branch, and a U-shaped image
domain network, which can exploit the feature representa-
tion from different domain to achieve the high-quality MR
images. A dual-domain feature alignment module is intro-
duced to align the feature representation from parallel CNNs
with k-space and wavelet domain into a unified space and
remove the artifacts.Additionally, a hierarchical cross feature
enhancement module in image domain is designed to achieve
the final reconstructed images. Besides, deep supervision
is employed in HCFEM to enhance network performance
and robustness. Experimental results demonstrate that the
proposed method achieves good reconstruction and gener-
alization performance under various acceleration conditions
for brain andkneeMRI. In futurework, further improvements
will be made to enhance the proposed method’s performance
and computational efficiency. However, this study trains and
tests model only on brain and knee data. In the future, it is
necessary to collect multi-center clinical data from different

anatomical sites, devices, and acquisition methods. This
study does not consider motion artifacts or other artifacts
generated during the acquisition process. Future research
can design models to address these challenges. Addition-
ally, more efficient inference models can be developed for
scenarios with limited hardware conditions.
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